

Working with emergent plurilingual learners in numeracy instruction

Dr Craig Neville \& Dr Máire Ní Ríordáin

Lecturer in Education

A TRADITION OF INDEPENDENT THINKING

UCC

University College Cork, Ireland Coláiste na hOllscoile Corcaigh

Fundamental principles when working with emergent plurilingual students.

What is a language repertoire and how do I support it? What are funds of knowledge?

Language proficiency, CALPS and mathematical discourse

Zhang-Wu, 2017: CLR

'Every teacher is a languages teacher.'

Pedagogical approach
 Communication is fundamental to learning.

Multilingual mindset

Plurilingual mindset

Funds of Knowledge

Strategies and bodies of knowledge accumulated in homes and communities [which allow pupils] to participate with people they trust
(González et al, 2005, pg 91-92)

Language Repertoire

A set of various linguistic identities and associated codes, which one person can use in different situations.
(Finegan, 2014, p. 547).

We must foster the linguistic repertoires of all our students because their competence in one language will support their competence in other languages that they acquire as well as reaffirming their (pluri)linguistic and (pluri)cultural identity.

My English that
I speak from Cork

The Irish that I learnt In the Gaeltacht in Northern Ireland

The Kosovan that I learn at Saturday school with my friends from school.

The Albanian that I speak with my parents.

Language Proficiency

The Mathematics Register

We consider mathematical language as a distinct 'register' within a natural language e.g. English or Irish.

Which is described as "a set of meanings that is appropriate to 55 a particular function of language, together with the words and structures which express these meanings." (Halliday 1975, p.65).

The Mathematics Register

Within the mathematics register different forms of mathematical language can be found.

(Meaney, 2005)

The Mathematics Register

This reinforces the view that the content of mathematics is not taught without language.

The process of learning mathematics involves the mastery of the mathematics register.

This allows students to communicate their mathematical findings in a suitable manner but without this fluency, students are restricted in the ways that they can develop or redefine their mathematical understandings.
(Meaney, 2005)

Major Design Principles (Erath et al., 2021)

For language learning to be a catalyst for mathematics learning, materials and instruction should:

- Engage students in rich discourse practices
- Establish various mathematics language routines
- Connect language varieties and multimodal representations
- Include students' multilingual resources
- Use macro-scaffolding to sequence and combine language and mathematics learning opportunities,
- Compare language pieces (form, function, etc.) to raise students' language awareness.

	Mathematical Richness To what extent is the mathematics discussed clear. correct. and well justi- fied (tiod to fied (tiod to underpinnings)?	Cognitive Demand To what extent do classroom interactions create and maintain an environment of intellectual challenge?	Equitable Access To what extent do activity structures invite and support active engagement from the diverse range of students?	Agency To what extent do students have opportunities to conjecture, explain, and argue. thus to developing agency and authority?	Use of Contributions To what extent is student reasoming elicited, challenged, and refined?	Discursive Demand To what extent do students engage in rich discourse practices? (additional dimension)	Connecting Registers To what extent are language registers and representations syssematically and explicititly contional dimension)
$\frac{\text { 을 }}{2}$	The content is purely rote OR disconnected or unfocused OR consequential mathematical errors or language inaccuracies are not addressed.	Classroom activities are structured so that students mostly apply farniliar prooeClures or memorized facts.	Classroom management is problematic to the point where the lesson is disrupted. OR a significant mumber of students appear disengaged and there are no overt mechanisms to support engagement.	The teacher initiates conversations. Students" speech turns are short (one sentence or less) and shaped or constrained by what the teacher says or does.	The teacher may note student answers or work, but the student reasoming is not surfaced or pursued. Teacher actions are limited to corrective foodback or encouragement.	No explicit demands to verbalize own ways of thinking, procedures, or solutions OR students only report their processes of calculation.	The content is primarily addressed in only one register/ representation OR Different regis-ters/reppresentations: are juxtaposed but not related to each othee.
$\frac{\overrightarrow{y y}}{3}$	The content is relatively clear and correct BUT connections between procetion strategies, concepts, possi- bly contexts and the meaningare either Limaited or saeperficial	Classroom activities offer possibilities of conceptual or language richness or problemsolving challenge, BUT teaching interactions tend to "scaffold away" the challenges and mostly limit students to providing short responses to teacher prompts.	The parriciparion of strudencs is eveniby distribured or the reacher sives smpporz so that a variety of srudewrs can participare in acrivities BUT the srudents do nor mecessarify carry owt Aigher onder acrivities relared to comienr.	Students have a chance to ralk abour marhewaricall contert, their own ddeas, and meaning-related interpretations BUT "the student proposes, the teacher disposes": class discussions and student ideas are not explored or built upon.	The teacher refers to student"s thinking and student's mean-ing-relatod language, perhaps even to common mistakes BUT Idenas with learning porenrial are mor taken ars a basls or problematic ideas are nor ussed ass challenges.	Students are explicitly asked or are used to explaining meanings and justifying concepts. their own ways of thinking. procedures, and solutions BUT formal and mean-ing-related language resources are not or incorrectly linked with each other.	Content or tasks are translated into anotber representation/register BUT changes are always conducted in the same direction.
$\frac{\tilde{y}}{\underline{3}}$	The content is relatively clear and correct AND connections between procedures/stranegeies. concepts, consexcrs and moan ing-related lanaddressed and explained	The teacher's hints or scaffolds encourage and support students in "peoductive struggle" in building understanding and engaging in mathematical practices or langrage issues. AND Level of demand is maintained by appropriate scaf folds or promptes.	The teacher actively supports (and to some degree achieves) broad and meaningful participation OR What appear to be established participation structures result in such participation.	Students put forth and defend their ideas and used terminology or meaning-related language. Teacher may ascribe ownership for students" ideas in exposition. OR students respond to and build on each other"s ideas.	The teacher solicits student thinking and individwall use of mean-ing-related language AND subsequent instruction responds to those ideas by building on procluctive beginnings or emerging misumderstanding or langwape ernors.	Students are explicitly asked or are usod to explaining meanings and justifying their own ways of thinking procedures and solutions AND formal and mean-ing-related language resources are correctly related.	The explicit connection between several regis-ters/representations is stimulated. AND realized by verbalizing the comnection. OR Changes are conducted flexibly in different directions.

Fig. 2 L-TRU framowork: languapo-responaive mathomatics waching for robust understanding (Adaptations from Schoonsold's TRU (2013) ant marked in groy if thry concern language and in ikalics if thoy were mooessary to capturo relovant differencos in our data sect more clowly)

Prediger, S. \& Neugebauer, P
(2021). Capturing
teaching practices in language-
responsive
mathematics classrooms Extendin
g the TRU framework "teaching
for robust understanding" to L-
TRU. ZDM-
Mathematics Education, 53, 289-
304, https://doi.org/10.1007/s11
858-020-01187-1

How do we develop CALPS whilst being linguistically and culturally responsive?

- For acquisition of mathematical discourse, the goal of numeracy educators is to provide comprehensible linguistic input to learners by integrating it with content:

- Numeracy educators should ensure that 'social interactions' form the basis of communication in numeracy lessons. This is how language is best acquired.
- Numeracy educators should assess prior knowledge through their L1, including acknowledging alternative methodologies for notation.
- Numeracy educators must foster a safe and secure learning environment.

How do we develop CALPS whilst being linguistically and culturally responsive ?

Prior to any lesson, analyse the discourse of your chosen lesson for:

Key concepts	Verbs in communicative forms	Connectors	Sequencing Words	Asking questions
Mutiplication	Multiplied by...is/equals Times by...is/equals 'seven twos' are	And Also But	Firstly, Then, Next, Step $1 / 2 / 3$ Finally	What is___multiplie d by?

How do we develop CALPS whilst being linguistically and culturally responsive?

$7 \times 2=$

Can you explain to me in Spanish what 7×2 equals? Write as you say it.

Be consistent

 Coláiste na hOllscoile CorcaighHow do we develop CALPS whilst being linguistically and culturally responsive ?

So in English, we express this as seven multiplied by two equals fourteen. Can you repeat that for me?

How do we develop CALPS whilst being linguistically and culturally responsive ?

$$
7 \times 3=21
$$

Seven	Multiplied by	Two	Equals	fourteen
Seven	Multiplied by	Three	Equals	Twenty-one

Here's another. Seven multiplied by three is twentyone. Can you repeat that, too?

How do we develop CALPS whilst being linguistically and culturally responsive ?

$7 \times 10=70$

Seven	Multiplied by	Two	Equals	fourteen
Seven	Multiplied by	Three	Equals	Twenty-one
	Multiplied by		equals	

Can you try this one by yourself?

Repeat with scaffolding

How do we develop CALPS whilst being linguistically and culturally responsive?

$7 \times 10=70$

Seven	Multiplied by	Two	Equals	fourteen
Seven	Multiplied by	Three	Equals	Twenty-one
	Multiplied by		equals	

Can you try this one by yourself?

How do we develop CALPS whilst being linguistically and culturally responsive ?

$3 \times 3=$

Ok, what is 3 multiplied by 3 ?
Three multiplied by three are 9. Coláiste na hOllscoile Corcaigh

Where to next?

How do we develop CALPS whilst being linguistically and culturally responsive ?

For problem-based questions, adopt a Narrow Reading approach. This ensure that the input you are providing is highly comprehensible, i.e. it barely changes structure. These should also be based on the discourse structures that you have been working with.
-If seven multiplied by two is fourteen, then what is two multiplied by seventeen?
-If two multiplied by three is six, then what is six multiplied by two?
-If two people are multiplied by three oranges, then how คํํ웅
many oranges are there?
-If two people eat three apples, then how many apples

Language proficiency.

蹅

Overall gaining language proficiency and mastering the mathematics register is complex and slow

- Cummins, J. (2000). Language, power, and pedagogy: Bilingual children in the crossfire. Clevedon, UK: Multilingual Matters.
- Erath, K., Ingram, J., Moschkovich, J., \& Prediger, S. (2021). Designing and enacting instruction that enhances language for mathematics learning: a review of the state of development and research. ZDM Mathematics Education 53, 245-262. https://doi.org/10.1007/s11858-020-01213-2
- European Commission (2018). Companion to the Common European Framework of Reference for Languages. Brussels / Strasbourg.
- Finegan, E. Language: Its structure and use. Stamford: Cengage Learning, 2014.
- González N. Moll, L. and Amanti, C. (eds) (2011) Identity Texts: The Collaborative Creation of Power In Multilingual Schools.' Stoke-on-Trent: Trentham Books.
- Halliday, M. A. K. (1975). Learning to mean-Explorations in the development of language. Edward Arnold.
- Krashen, S. (1988) Second Language Acquisition and Second Language Learning. Prentice-Hall International.
- Meaney, T. (2005). Challenging perspectives in mathematics classroom communication. Information Age Publishing.
- Prediger, S. \& Neugebauer, P. (2021). Capturing teaching practices in language-responsive mathematics classrooms Extending the TRU framework "teaching for robust understanding" to L-TRU. ZDM- Mathematics Education, 53, 289-304, https://doi.org/10.1007/s11858-020-01187-1

University College Cork, Ireland
Colaliste na hOllscoile Corcaigh

